Here’s the James Webb telescope’s first direct image of an exoplanet
JWST also got its first direct spectrum of an object orbiting a star in another solar system

Science News headlines, in your inbox
Headlines and summaries of the latest Science News articles, delivered to your email inbox every Thursday.Those three features — size, distance and youth — made HIP 65426 b relatively easy to see, and so a good planet to test JWST’s observing abilities. And the telescope has once again surpassed astronomers’ expectations (SN: 7/11/22).
“We’ve demonstrated really how powerful JWST is as an instrument for the direct imaging of exoplanets,” says exoplanet astronomer and coauthor Aarynn Carter of the University of California, Santa Cruz.Astronomers have found more than 5,000 planets orbiting other stars (SN: 3/22/22). But almost all of those planets were detected indirectly, either by the planets tugging on the stars with their gravity or blocking starlight as they cross between the star and a telescope’s view.
To see a planet directly, astronomers have to block out the light from its star and let the planet’s own light shine, a tricky process. It’s been done before, but for only about 20 planets total (SN: 11/13/08; SN: 3/14/13; SN: 7/22/20).
“In every area of exoplanet discovery, nature has been very generous,” says MIT astrophysicist Sara Seager, who was not involved in the JWST discovery. “This is the one area where nature didn’t really come through.” In 2017, astronomers discovered HIP 65426 b and took a direct image of it using an instrument on the Very Large Telescope in Chile. But because that telescope is on the ground, it can’t see all the light coming from the exoplanet. Earth’s atmosphere absorbs a lot of the planet’s infrared wavelengths — exactly the wavelengths JWST excels at observing. The space telescope observed the planet on July 17 and July 30, capturing its glow in four different infrared wavelengths.Subscribe to Science News
Get great science journalism, from the most trusted source, delivered to your doorstep.That object is called VHS 1256 b. It’s as heavy as 20 Jupiters, so it may be more like a transition object between a planet and a star, called a brown dwarf, than a giant planet. JWST found evidence that the amounts of carbon monoxide and methane in the atmosphere of the orb are out of equilibrium. That means the atmosphere is getting mixed up, with winds or currents pulling molecules from lower depths to its top and vice versa. The telescope also saw signs of sand clouds, a common feature in brown dwarf atmospheres (SN: 7/8/22).
“This is probably a violent and turbulent atmosphere that is filled with clouds,” Hinkley says. HIP 65426 b and VHS 1256 b are unlike anything we see in our solar system. They’re more than three times the distance of Uranus from their stars, which suggests they formed in a totally different way from more familiar planets. In future work, astronomers hope to use JWST to image smaller planets that sit closer to their stars. “What we’d like to do is get down to study Earths, wouldn’t we? We’d really like to get that first image of an Earth orbiting another star,” Hinkley says. That’s probably out of JWST’s reach — Earth-sized planets are still too small see. But a Saturn? That may be something JWST could focus its sights on.